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Abstract. Ill-defined pinch singularities arising in a perturbative expansion in out of equilibrium quantum
field theory have a natural analogue to standard scattering theory. We explicitly demonstrate that the
occurrence of such terms is directly related to Fermi’s golden rule known from elementary scattering
theory and is thus of no mystery. We further argue that within the process of thermalization of a plasma
one has to resum such contributions to all orders as the process itself is of non-perturbative nature. In this
way the resummed propagators obtain a finite width. Within the Markov approximation of kinetic theory
the actual phase space distribution at a given time of the evolution enters explicitly.

Non-equilibrium many-body theory or quantum field
theory has become a major topic of research for describ-
ing various transport processes in nuclear physics, in cos-
mological particle physics or more generally in quantum
dissipative systems. A very powerful diagrammatic tool
is given by the ‘Schwinger-Keldysh’ [1–3] or ‘closed time
path’ (CTP) technique by means of non-equilibrium
Green’s functions for describing a quantum system also be-
yond thermal equilibrium [4]. For an equilibrium situation
this technique is equivalent to the real time description of
finite temperature field theory [5–7].

Employing the diagrammatic CTP rules potential
‘pinch singularities’ might arise in strictly perturbative ex-
pressions. As an example we consider a scalar field theory.
A typical contribution arising in a perturbative expansion
takes e.g. the form

Dret
0 (~p, p0)Σ0(~p, p0)Dav

0 (~p, p0) . (1)

Here Σ0 describes some physical (perturbative) quantity
(e.g. a self energy insertion); Dret

0 and Dav
0 denote the free

retarded and advanced propagator, respectively. As Dret
0

contains a pole at p0 = ±Ep − iε and Dav
0 a pole at p0 =

±Ep + iε the product of both in the above expression is
ill-defined, if Σ0(~p, p0 = Ep =

√
m2 + ~p2) does not vanish

onshell. Transforming such an expression back into a time
representation, the contour has to pass between this pair
of two infinitely close poles.

It was observed and proven by Landsman and van
Weert that such ill-defined terms cancel each other in each
order in perturbation theory, if the system stays at ther-
mal equilibrium [6]. Their arguments, however, rely solely
on the KMS boundary conditions of the free propagators
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and self energy insertions, so that they do not apply for
systems out of equilibrium. This severe problem arising
for systems out of equilibrium was first raised by Altherr
and Seibert [8]. Indeed, it was speculated there that the
CTP formalism might not be adequate for describing non-
equilibrium systems at all. In a subsequent paper, Altherr
[9] tried to ‘cure’ this problem by hand by introducing
a finite width for the ‘unperturbed’ free CTP propaga-
tor D0 so that the expressions are at least well-defined
in a mathematical sense. Within his modified perturba-
tive approach, he also showed that seemingly higher order
diagrams do contribute to a lower order in the coupling
constant, as some of the higher order diagrams involving
pinch terms will receive factors of the form 1/Γn, n ≥ 1
reducing substantially the overall power in the coupling
constant. In his particular case Altherr investigated the
dynamically generated effective mass (the ‘tadpole’ contri-
bution) within standard φ4−theory. (For the hard modes
the onshell damping Γ is of the order of o(g4T ).) There-
fore he concluded that power counting arguments might
in fact be much less trivial for systems out of equilibrium.
We will come back to his observation below.

In a recent work [10] we have discussed in detail that
modes or quasi-particles become thermally populated by
a non-perturbative Langevin like interplay between noise
and dissipative terms entering the non-equilibrium quan-
tum transport equations. In the process of thermalization
the full propagators necessarily must acquire some finite
width (due to collisions or more generally due to damp-
ing). Plasmons behave as ‘nonshell’ modes [11]. Strictly
speaking, the evolution of a non-equilibrium system to-
wards equilibrium is always non-perturbative. We will
come back to this interpretation in more detail below.

First, however, we will elaborate on the physical rea-
son for the occurrence of pinch singularities in a strictly



518 C. Greiner, S. Leupold: Interpretation and resolution of pinch singularities in non-equilibrium quantum field theory

perturbative expansion, when an interacting system is pre-
pared with some non-equilibrium occupation of the par-
ticles. As a motivation we were inspired by the idea that
in principle the Schwinger-Keldysh formalism is also ad-
equate to describe simple scattering processes where e.g.
only two initial particles are prepared at some fixed mo-
mentum states in the past. Hence, the perturbative scheme
of the Schwinger-Keldysh formalism should give the same
results as elementary scattering theory.

To set the stage we start with some formulae and ma-
nipulations already presented in [8]. We follow the nota-
tion of [10]. For simplicity we consider in the following
a weakly interacting scalar φ4-theory. The initial state
in the far past (assuming a homogeneous and station-
ary system) is prepared by specifying the momentum oc-
cupation number ñ(~p) of the (initially non interacting)
onshell particles. Note that this occupation number de-
pends only on the three momentum ~p. (If specified with a
thermal equilibrium distribution at some given tempera-
ture, ñ would be replaced by the onshell Bose distribution
nB(Ep =

√
m2 + ~p2).) The occupation number ñ(~p) en-

ters the (free) propagator

D<
0 (p) = −2πi sgn(p0) δ(p2 − m2)

× [Θ(p0)ñ(~p) − Θ(−p0)(1 + ñ(~p))] (2)

In addition, we note the form of the free retarded and
advanced propagator:

D
ret/av
0 (p) =

1
p2 − m2 ± iε sgn(p0)

. (3)

To calculate perturbative corrections to the propagators
we apply the Langreth-Wilkins rules [12] which are quite
well-known within the context of the Schwinger-Keldysh
formalism:

Dret = Dret
0 + Dret

0 Σret
0 Dret

0 + . . .

=: Dret
0 + ∆Dret, (4)

Dav = Dav
0 + Dav

0 Σav
0 Dav + . . . =: Dav

0 + ∆Dav , (5)
D< = D<

0 + Dret
0 Σret

0 D<
0 + Dret

0 Σ<
0 Dav

0

+D<
0 Σav

0 Dav
0 + . . . =: D<

0 + ∆D< , (6)

where the dots denote multiple self energy insertions which
we will not consider for the moment. Here the retarded and
advanced self energies are given by the Fourier transforms
of (cf. e.g. [10])

Σret(x1, x2) := Θ(t1 − t2)
[
Σ>(x1, x2) − Σ<(x1, x2)

]
,

(7)
Σav(x1, x2) := Θ(t2 − t1)

[
Σ<(x1, x2) − Σ>(x1, x2)

]
.

(8)

The self energies Σ> and Σ< are related as Σ>(x1, x2) =
Σ<(x2, x1) in case of a scalar field theory. The self energy
insertion Σ0 in a strictly perturbative expansion is given
by a convolution of the initial free propagators. If the ini-
tial momentum distribution entering the propagator (2) is
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�Fig. 1. Lowest order self energy term in φ4-theory which con-
tributes to the pinch problem (sunset diagram)
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Fig. 2. Imaginary part of the sunset diagram which can be
identified with a scattering amplitude

given by the Bose equilibrium distribution, the important
relation

Σ>(p) = ep0/T Σ<(p) , (9)

holds, which is nothing but the KMS boundary condition.
It is worth mentioning that our conventions are chosen
such that iΣ<(p) is always real and non negative. In a
transport theory (see below) it can be interpreted as the
production rate for modes with the respective energy. As
a characteristic example we discuss in the following the
‘sunset’ graph arising in scalar φ4-theory. This diagram is
illustrated in Fig. 1. We choose this particular graph as
an example since the self energies Σ

</>
0 (~p, p0 = Ep) do

not vanish onshell for thermal distributions (see e.g. [13,
14]). This also holds for any non-equilibrium distribution
ñ as long as the individual two-particle scattering contri-
butions are kinematically allowed. Within finite temper-
ature field theory the imaginary part of the self energy
(‘cut’ diagram) taken onshell is connected to the scatter-
ing rate (as an illustration see Fig. 2). On the other hand,
there exist certain self energy insertions like the so-called
hard thermal loop self energy [15] or other one-loop dia-
grams [16] which vanish on-shell due to simple kinematical
constraints and thus do not cause any pinch problem.

By inspecting (4-6) more closely one finds that the
perturbative corrections ∆Dret/av to the free retarded/ad-
vanced propagator are free of any pinch singularities as the
emerging poles are all located at the same side of the con-
tour. We note in passing that this also holds for multiple
self energy insertions in (4,5) (see e.g. [10]). In contrast,
all three contributions to ∆D< are ill-defined. Using the
identity

πsgn(p0) δ(p2 − m2) =
i

2
(
Dret

0 (p) − Dav
0 (p)

)
(10)

together with (2) we can further manipulate the three con-
tributions of ∆D< by employing the Fourier transforms
of the definitions (7) and (8). We find

∆D<(p) = ∆D<
reg(p) + ∆D<

pinch(p) (11)

with a regular part,

∆D<
reg(p) = [Θ(p0)ñ(~p) − Θ(−p0)(1 + ñ(~p))]

× (
Dret

0 (p)Σret
0 (p)Dret

0 (p)
−Dav

0 (p)Σav
0 (p)Dav

0 (p)) , (12)
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and the part carrying the pinch singularities,

∆D<
pinch(p) =

= Dret
0 (p)

[
Θ(p0)

(
(1 + ñ(~p))Σ<

0 (p) − ñ(~p)Σ>
0 (p)

)
(13)

+ Θ(−p0)
(
(1 + ñ(~p))Σ>

0 (p) − ñ(~p)Σ<
0 (p)

)]
Dav

0 (p) .

The last expression is ill-defined, if the terms in the square
brackets do not vanish onshell as already pointed out in
[8]. The expression in the square brackets is familiar from
standard kinetic theory (see e.g. [8,10]): Apart from a triv-
ial factor one can interpret

Γeff(~p) :=
1

2Ep

[
(1 + ñ(~p))iΣ>

0 (p) − ñ(~p)iΣ<
0 (p)

] ∣∣∣∣
p0=Ep

(14)

as the net effective rate for the change of the occupation
number per time. For an equilibrium situation the occupa-
tion number is given by the Bose distribution and the self
energy insertions fulfill the KMS condition (9). Hence, for
the equilibrium case the whole bracket exactly vanishes
and no pinch singularities emerge. In contrast, this is not
the case for a general non-equilibrium configuration [8].

To shed first some light on the physical interpretation
of this ill-defined expression one has to ask for observables
which are affected by this singularity. Within standard
scattering theory one would think about the probability
for a particle of some initial momentum state to be scat-
tered into another momentum state. Therefore we ask,
how the occupation number ñ has changed after a long
time. The occupation number for the out-states can be
readily extracted from D< by means of the formula (for a
derivation see [10])

n(~p, t → ∞)(out) = 〈a† (out)
~p a

(out)
~p 〉

=
(

Ep

2
+

1
2Ep

∂

∂t

∂

∂t′
+

i

2
(

∂

∂t
− ∂

∂t′
)
)

1
V

×
∫

d3x

∫
d3y ei~p~xe−i~p~y

(
iD<(~y, t; ~x, t′)

) ∣∣∣∣
t′=t

(15)

t→∞=
∫

dp0

2π

(
Ep

2
+

p2
0

2Ep
+ p0

) (
iD<(~p, p0)

)
. (16)

When inserting (11) one finds by contour integration that
∆D<

reg only yields a finite contribution. The same holds
true for the Θ(−p0)-term in (13) since the ’particle pro-
jector’

(
Ep

2 + p2
0

2Ep
+ p0

)
vanishes on the antiparticle mass

shell. However, the Θ(p0)-term of the ill-defined expression
∆D<

pinch gives rise to the following infinite expression

∆n(~p)(out) = Γeff(~p) · 2πδ(0) + finite contributions. (17)

From analogy to the standard derivation of Fermi’s golden
rule in elementary quantum scattering theory one is im-
mediately tempted to interpret this δ(0) singularity as the
elapsed scattering time T → ∞. Indeed, this interpreta-
tion has very recently been conjectured by Niegawa in

[17], where he was also elaborating on the issue of pinch
singularities in non-equilibrium quantum field theory. His
major point, however, has been to interpret the infinite
shift ∆n(~p) as a renormalization in the number density.
We think, however, that this latter interpretation further
obscures the problem instead of uncovering the physical
processes which are at the bottom of the pinch problem.

To demonstrate that the pinch singularities indeed ap-
pear as a result of Fermi’s golden rule in scattering theory
we now assume that the interaction is switched on at a
time t = −T/2 and switched off at t = T/2, i.e. we re-
place

Σ
</>
0 (x1, x2) → Σ̄

</>
0 (x1, x2) := (18)

Θ(T
2 − t1) Θ(T

2 − t2) Σ
</>
0 (x1, x2) Θ(t1 + T

2 ) Θ(t2 + T
2 )

and assume that the duration time T is large but finite.
This procedure regulates the pinch singularity to a finite
value. As a first step we again extract the pinch term from
(6), now working in the representation of three-momentum
and time:

∆D<
pinch(~p, t, t′)

=
∫

dp0(1)

2π

dp0(2)

2π

dp0(3)

2π
e−ip0(1)t eip0(3)t

′

×Dret
0 (~p, p0(1)) Dav

0 (~p, p0(3))

× [(
Θ(p0(1))ñ(~p) − Θ(−p0(1))(1 + ñ(~p))

)
Σav

0 (~p, p0(2))

+Σ<
0 (~p, p0(2)) − Σret

0 (~p, p0(2))

× (
Θ(p0(3))ñ(~p) − Θ(−p0(3))(1 + ñ(~p))

)]

×
T/2∫

−T/2

dt̄ eit̄(p0(1)−p0(2))

T/2∫
−T/2

dt̄′ eit̄′(p0(2)−p0(3)) . (19)

As
T/2∫

−T/2

dt eit∆p =
2

∆p
sin

(
T

2
∆p

)
T→∞→ 2πδ(∆p) , (20)

it becomes clear how the pinch singularity arises for T →
∞. Furthermore, if T is already sufficiently large, we are
safely allowed to approximate p0(1) ≈ p0(2) ≈ p0(3) within
the square bracket in (19):

[. . .] ≈ [
Θ(p0(2))

(
(1 + ñ(~p))Σ<

0 (~p, p0(2))

−ñ(~p)Σ>
0 (~p, p0(2))

)
(21)

+Θ(−p0(2))
(
(1 + ñ(~p))Σ>

0 (~p, p0(2))

−ñ(~p)Σ<
0 (~p, p0(2))

)]
.

We proceed by calculating ∆n(~p)(out) by means of (15).
For this we first take t, t′ > T/2, evaluate the p0(1)- and
p0(3)-integration by standard complex contour integration
and then insert the emerging expression into (15). It re-
sults in

∆n(~p)(out)
pinch = (−i)

(
Ep

2
+

1
2Ep

∂

∂t

∂

∂t′
+

i

2
(

∂

∂t
− ∂

∂t′
)
)
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⊗
∫

dp0(2)

2π

[
Θ(p0(2))

(
(1 + ñ(~p))Σ<

0 (~p, p0(2))

−ñ(~p)Σ>
0 (~p, p0(2))

)
+ Θ(−p0(2))

(
(1 + ñ(~p))Σ>

0 (~p, p0(2))

−ñ(~p)Σ<
0 (~p, p0(2))

)]
× 1

Ep

[
sin(T

2 (p0(2) + Ep))
p0(2) + Ep

eiEpt

− sin(T
2 (p0(2) − Ep))
p0(2) − Ep

e−iEpt

]

× 1
Ep

[
sin(T

2 (p0(2) − Ep))
p0(2) − Ep

eiEpt′

− sin(T
2 (p0(2) + Ep))
p0(2) + Ep

e−iEpt′
] ∣∣∣∣∣

t′=t

≈ Γeff(~p)
∫

dp0(2)

2π

4
(p0(2) − Ep)2

sin2
(

T

2
(p0(2) − Ep)

)
= Γeff(~p) · T (22)

which is valid for large but finite T .
Thus we have demonstrated the bridge between the

occurrence of pinch singularities within the context of
the CTP formalism and Fermi’s golden rule in elemen-
tary quantum scattering theory. The effective rate Γeff is
therefore analogous to the transition probability per unit
time. Indeed one can easily understand in physical terms
that one has to expect such a singularity in perturbation
theory: Staying strictly within the first order contribution
the particles remain populated with the initially prepared
non-equilibrium occupation number (since this quantity
enters the free propagator (2)) and scatter for an infinitely
long time. Therefore, the resulting shift ∆n(~p)(out) should
scale with Γeff(~p) · T with Γeff(~p) held fixed. We conclude
that the occurrence of pinch singularities appearing in
perturbative contributions within non-equilibrium quan-
tum field theory is of no mystery, but actually it has to
appear because of a very intuitive reason: the interaction
time T becomes infinite. However, looking at a Boltzmann
equation which describes the time evolution of the particle
distribution function in the semiclassical regime (see (30)
below) one realizes that the occupation number does not
stay constant during the dynamical evolution of the sys-
tem, but will be changed on a timescale of roughly 1/Γ .
The quasi-particles are not really asymptotic states.

Next, however, we will show how pinch singularities are
formally cured by a resummation procedure. The onshell
non-equilibrium effective rate Γeff can be visualized as be-
ing the net result of collisions between the onshell parti-
cles. From standard thermal field theory one would thus
expect that the propagators will become dressed and sup-
plemented by a finite (collisional or more generally damp-
ing) width. This represents already a non-perturbative
effect which only can be achieved by a resummation of
Dyson-Schwinger type. As a first attempt (proposed by

Baier et al. [18]), one might resum the full series of (4-6)
using the self energy Σ0 (recall that the latter is calculated
from free propagators):

D = D0 + D0Σ0D0 + D0Σ0D0Σ0D0 + . . .

= D0 + D0Σ0D . (23)

With the definitions Γ0(~p, p0) := i
2p0

[Σ>
0 (~p, p0) − Σ<

0 (~p,

p0)] and ReΣ0 := ReΣret
0 = ReΣav

0 we end up with (cf. e.g.
[10])

Dret = Dret
0 + Dret

0 Σret
0 Dret

=
1

p2 − m2 − ReΣ0 + ip0Γ0
, (24)

Dav = Dav
0 + Dav

0 Σav
0 Dav

=
1

p2 − m2 − ReΣ0 − ip0Γ0
, (25)

D< = DretΣ<
0 Dav

= (−2i)
p0Γ0

(p2 − m2 − ReΣ0)2 + p2
0Γ

2
0

Σ<
0

Σ>
0 − Σ<

0
.(26)

Hence the resummation of the series (6) of ill-defined
terms results in a well-defined expression. The quantity

nΣ(~p, p0) :=
Σ<

0

Σ>
0 − Σ<

0
(27)

appearing in (25) has to be interpreted as the ‘occupa-
tion number’ demanded by the self energy parts [10]. If
the equilibrium KMS conditions (9) apply for the self en-

ergy part, then nΣ(~p, p0)
KMS−→ nB(p0) becomes just the

Bose distribution function. For a general non-equilibrium
situation, however, this factor deviates from the Bose dis-
tribution. If the damping width is sufficiently small, i.e.
Γ̄ , Σ̄>, Σ̄< are proportional to some power in the (small)
coupling constant g (e.g. ∼ g4 in case of the sunset graph
depicted in Fig. 1) the expression (26) results in

DretΣ<
0 Dav g→0−→ −2πi sgn(ω) δ(p2 − m2) lim

g→0
nΣ(~p, p0) .

(28)
When evaluating the occupation number for the out-states
by means of (16) one accordingly will get

n(~p)(out) ≈ nΣ(~p, Ep) (29)

which is free of any pathological behavior. The astonishing
thing to note at this point is that in fact the (initial)
non-equilibrium distribution ñ has been substituted by
nΣ and, therefore, does not show up explicitly. So the
question is, how ñ enters?

Calculating Σ0 on a purely perturbative level the ini-
tial occupation number ñ enters via the free propagator
(2). This however cannot be the whole truth in a dynam-
ically evolving system. It is important to make sure that
such a system is prepared at some finite initial time t0. (If
t0 would be taken as t0 → −∞ the system would already
have reached equilibrium long time ago.) Bedaque [19] al-
ready has noted that pinch singularities are in fact an arti-
fact of the boundaries chosen at t0 → −∞. Time reversal
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�Fig. 3. Dyson-Schwinger equation with fully dressed propaga-
tors (skeleton expansion)

symmetry is explicitly broken, so that the propagators in
principle have to depend on both time arguments explic-
itly before the system has reached a final equilibrium con-
figuration. Therefore the use of Fourier techniques (which
in fact has led to the pinch singularities in (13)) is highly
dubious. The initial out of equilibrium distribution ñ(t0)
cannot stay constant during the evolution of the system
as it has to evolve towards the Bose distribution. Hence
there must exist contributions which attribute to the tem-
poral change of the distribution function. As long as the
system is not in equilibrium (on a time scale of roughly
1/Γ0(~p, Ep)), the propagator thus cannot be stationary. In
addition, the self energy parts Σ< and Σ> do also evolve
with time. Hence they should depend on the evolving dis-
tribution function and not persistently on the initial one,
ñ, which enters Σ0 in (23). Thus the resummation of (23)
does not cover all relevant contributions. Speaking more
technically, the self energy operators must also be eval-
uated consistently by the fully dressed and temporally
evolving one-particle propagators.

The solution to these demands is, of course, the de-
scription of the system by means of appropriate (quan-
tum) transport equations [20,4,10]. Graphically this is il-
lustrated in Fig. 3. In addition to the sunset diagram we
have also included the mean field or Hartree diagram there
which in a perturbative scheme is the one which arises
first. (It would, however, not result in a pinch singularity
so that we had discarded it in our previous discussion.)
The difference to the resummation of (23) is the fact that
the propagators entering into the self-energy operators are
now also the fully dressed ones. Such a skeleton expansion
of the self energies with including the dressed propagators
in the resummation is also familiar in standard quantum
many-body theory for strongly interacting systems [21].

Unfortunately, the full quantum transport equations
are generally hard to solve and thus are not so much of
practical use. Yet one need not be that pessimistic. If the
coupling is weak, i.e. the damping width is sufficiently
small compared to the quasi-particle energy (which one
typically assumes for many applications) one can take the
Markov approximation to obtain standard kinetic equa-
tions (for a derivation see e.g. [20,4,10]). For the situation
illustrated in Fig. 3 one gets the standard form [10]

(Ep∂t − ~p∂~x − ∂~xm(~x, t)∂~p) f(~x, t; ~p) (30)

=
1
2

[
iΣ<(~x, t; ~p, Ep) (f(~x, ~p, t) + 1)

−iΣ>(~x, t; ~p, Ep) f(~x, ~p, t)
]

Here f denotes the semi-classical non-equilibrium phase-
space distribution of quasi-particles. m(~x, t) denotes the
sum of the bare and the dynamical (space time depen-
dent) mass generated by the Hartree term. Within the

spirit of kinetic theory one easily realizes that the result
obtained in (22) simply states that the change in the occu-
pation number per time T is nothing but the collision rate.
Within this Markovian approximation the fully dressed
propagators are given by [10]

Dret(~x, t; p) ≈
1

p2 − m2(~x, t) − ReΣ(~x, t; p) + ip0Γ (~x, t; p)
, (31)

Dav(~x, t; p) ≈
1

p2 − m2(~x, t) − ReΣ(~x, t; p) − ip0Γ (~x, t; p)
, (32)

D<(~x, t; p) ≈
(−2i)

p0Γ (~x, t; p)
(p2 − m2(~x, t) − ReΣ(~x, t; p))2 + p2

0Γ
2(~x, t; p)

×f(~x, t; ~p) . (33)

In particular we emphasize that in (33) the instantaneous
non-equilibrium phase space distribution function f(t) en-
ters and not the initial one, ñ. The dynamically generated
mass as well as the collisional self energy contribution Σ
can thus be evaluated with these propagators. (In kinetic
theory one usually takes the propagators in their quasi-
free limit (ReΣ, Γ → 0), albeit instantaneous.) Higher
order terms leading to the pinch singularities are explic-
itly resummed and lead now to finite and very transparent
results.

One can now easily understand the observations made
by Altherr [9]. He has found, starting from some non-
equilibrium distribution ñ, that higher order diagrams
contribute to the same order in the coupling constant as
the lowest order one. Indeed, in his investigation, the par-
ticular higher order diagrams where nothing but the per-
turbative contributions of the series in (6) for the dressed
or resummed one-particle propagator D<. The only differ-
ence is that he has employed a ‘free’ propagator modified
by some finite width in order that each of the terms in
the series (6) becomes well defined. The reason for the
higher order diagrams to contribute to the same order is
that the initial out-of-equilibrium distribution ñ cannot
stay constant during the evolution of the system as it has
to evolve towards the Bose distribution. If ñ−nB is of or-
der o(1), it is obvious that there must exist contributions
which perturbatively attribute to the temporal change of
the distribution function and contribute to the same or-
der o(1). In fact, in our prescription (33), ñ has simply
be substituted by the actual phase space distribution f .
Then calculating e.g. the tadpole diagram, as discussed
in the particular case of [9], one has to stay within lowest
order in the skeleton expansion, but with the fully dressed
propagator.

In summary, we have shown in simple physical terms
why so called pinch singularities do (and have to) appear
in the perturbative evaluation of higher order diagrams
within the CTP description of non-equilibrium quantum
field theory. They are simply connected to the standard di-
vergence in elementary scattering theory. The occurrence
of pinch singularities signals the occurrence of (onshell)
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damping or dissipation. This necessitates in the descrip-
tion of the evolution of the system by means of non-
perturbative transport equations. In the weak coupling
regime this corresponds to standard kinetic theory. In this
case we have given a prescription of how the dressed prop-
agators can be approximated in a very transparent form.
Technically, pinch singularities appear due to a misuse of
Fourier techniques [19]. From a physical point of view,
scattering processes which change the occupation number
give rise to pinch singularities, if these processes go on
for infinitely long time. However, exactly these processes
drive the system towards thermal equilibrium within a fi-
nite time characterized by the inverse damping rate. In
equilibrium the occupation number stays constant and no
pinch singularities can appear.
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